Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus.

Author:

Hammerschlag R,Stone G C,Bolen F A,Lindsey J D,Ellisman M H

Abstract

Effects of the sodium ionophore, monensin, were examined on the passage from neuronal cell body to axon of materials undergoing fast intracellular transport. In vitro exposure of bullfrog dorsal root ganglia to concentrations of drug less than 1.0 micron led to a dose-dependent depression in the amount of fast-transported [3H]leucine- or [3H]glycerol-labeled material appearing in the nerve trunk. Incorporation of either precursor was unaffected. Exposure of a desheathed nerve trunk to similar concentrations of monensin, while ganglia were incubated in drug-free medium, had no effect on transport. With [3H]fucose as precursor, fast transport of labeled glycoproteins was depressed to the same extent as with [3H]leucine; synthesis, again, was unaffected. By contrast, with [3H]galactose as precursor, an apparent reduction in transport of labeled glycoproteins was accounted for by a marked depression in incorporation. The inference from these findings, that monensin acts to block fast transport at the level of the Golgi apparatus, was supported by ultrastructural examination of the drug-treated neurons. An extensive and selective disruption of Golgi saccules was observed, accompanied by an accumulation of clumped smooth membranous cisternae. Quantitative analyses of 48 individual fast-transported protein species, after separation by two-dimensional gel electrophoresis, revealed that monensin depresses all proteins to a similar extent. These results indicate that passage through the Golgi apparatus is an obligatory step in the intracellular routing of materials destined for fast axonal transport.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3