Heterogeneous nuclear RNA-protein fibers in chromatin-depleted nuclei.

Author:

Herman R,Weymouth L,Penman S

Abstract

The heterogeneous nuclear RNA-protein (hnRNP) fibers in HeLa cell nuclei are visualized by a nuclear subfractionation technique which removes 96% of the chromatin in a single step and 99% in a two-step elution but leaves the bulk of the hnRNA complexed with the remnant nuclear structure or lamina. Both steady-state and newly synthesized (approximately 15-s label) hnRNA are associated with the remnant nuclei to about the same extent. This association does not appear to depend on the presence of chromatin and exists in addition to any possible association of hnRNP with chromatin itself. Electron microscopy of partially purified nuclear hnRNA complexes shows that the hnRNP fibers form a ribonucleoprotein network throughout the nucleus, whose integrity is dependent on the RNA. Autoradiography confirms that hnRNA is a constituent of the fibers. The RNA network visualized in these remnant nuclei may be similar to RNA networks seen in intact cells. The hnRNA molecules appear to be associated with the nuclear lamina, at least in part, by unusual hnRNA sequences. More than half of the recovered poly(A) and double-stranded hnRNA regions remains associated with the nuclear structures or the laminae after digestion with RNase and elution with 0.4 M ammonium sulfate. In contrast, the majority of oligo(A), another ribonuclease resistant segment, is released together with most of the partially digested but still acid-precipitable single-stranded hnRNA and the hnRNP proteins not eluted by the ammonium sulfate alone. These special RNA regions appear to be tightly bound and may serve as points of attachment of the hnRNA to nuclear substructures. It is suggested that hnRNA metabolism does not take place in a soluble nucleoplasmic compartment but on organized structures firmly bound to the nuclear structure.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 235 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3