Membrane structure of nonactivated and activated human blood platelets as revealed by freeze-fracture: evidence for particle redistribution during platelet contraction.

Author:

van Deurs B,Behnke O

Abstract

The distribution of intramembrane particles of nonactivated and activated human blood platelets was studied by freeze-fracture under various experimental conditions to see whether morphological evidence for a structural coupling between the platelet actomyosin system and the fibrin network in a retracting clot could be established. Membrane particles were evenly distributed in nonactivated platelets; the total number (E + P faces) was approximately 1,500/micrometers 2 of membrane, and there were two to three times more particles present on the E face than on the P face. Transformation of discoid platelets to "spiny spheres" by cooling did not change the particle distribution. Platelet activation and aggregation by serum or ADP caused no change in membrane particle density or distribution. Particle distribution was not changed in Ca2+-activated platelets fixed immediately before fibrin formation, but after fibrin formation and during clot retraction, particles were sometimes most frequent on the P face and tended to form distinct clusters, and aggregates of E face pits were observed. Blood platelets contain contractile proteins that are distinct as filaments in platelets in retracting clots. We suggest that the redistribution of particles seen in activated platelets during clot retraction reflects the esablishment of mechanical transmembrane links between the platelet actomyosin system and the fibrin net. The P-face particle clusters may represent sites of force transmission between actin filaments bonded to the inside of the membrane and the fibrin network at the outside. Thus, whereas membrane particles may not be directly involved in the attachment of actin filaments to membranes, the transmission of the force of the contractile system to an exterior substrate apparently involves the intramembrane particles.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Specialized membrane areas in non-activated and thrombin-activated platelets;Scandinavian Journal of Haematology;2009-04-24

2. Where is the blood-brain barrier ? really?;Journal of Neuroscience Research;2005

3. Human Platelet Morphology/Ultrastructure;Platelets and Their Factors;1997

4. Immunocytochemical Aspects of Platelet Membrane Glycoproteins and Adhesive Proteins During Activation;Progress in Histochemistry and Cytochemistry;1996-01

5. NO modulates the apicolateral cytoskeleton of isolated hepatocytes by a PKC-dependent, cGMP-independent mechanism;American Journal of Physiology-Gastrointestinal and Liver Physiology;1995-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3