Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells.

Author:

Howard R J,Aist J R

Abstract

The effects of methyl benzimidazole-2-ylcarbamate (MBC), one of only a few agents that are active against microtubules of fungi, were analyzed at the ultrastructural level in freeze-substituted hyphal tip cells of Fusarium acuminatum. Nontreated and control cells had numerous microtubules throughout. After just 10 min of exposure to MBC, almost no cytoplasmic microtubules were present, except near spindle pole bodies. After 45 min of exposure to MBC, no microtubules were present in hyphal tip cells, but they were present in the relatively quiescent subapical cells. These observations suggested that there are different rates of turnover for cytoplasmic microtubules in apical and subapical cells and for microtubules near spindle pole bodies and that MBC acts by inhibiting microtubules assembly. A statistical analysis of the distribution of intracytoplasmic vesicles in thick sections of cells treated with MBC, D2O or MBC + D2O was obtained by use of a high-voltage electron microscope. More than 50% of the vesicles in the apical 30 micrometers of control cells were found to lie within 2 micrometers of the tip cell apex. MBC treatment caused this vesicle distribution to become uniform, resulting in a substantial increase in the number of vesicles in subapical regions. The reduction in the number of cytoplasmic microtubules, induced by MBC, apparently inhibited intracellular transport of these vesicles and rendered random the longitudinal orientation of mitochondria. In most cases, D2O appeared capable of preventing these MBC-effects through stabilization of microtubules. These observations support the "vesicle hypothesis" of tip growth and establish a transport role for cytoplasmic microtubules in fungal morphogenesis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3