Commitment of chick oviduct tubular gland cells to produce ovalbumin mRNA during hormonal withdrawal and restimulation.

Author:

Shepherd J H,Mulvihill E R,Thomas P S,Palmiter R D

Abstract

Acute withdrawal of estrogen from chicks leads to a precipitous decline in egg white protein synthesis and egg white mRNAs in the oviduct. In this paper we explore the biochemical basis of this phenomenon as well as the capacity of the "withdrawn" tubular gland cells to be restimulated with steroid hormones. During withdrawal, the decline in ovalbumin mRNA was closely correlated with the decline in nuclear estrogen receptors. Within 2-3 d of estrogen removal a withdrawn state was established and then maintained, as defined by a 1,000-fold-lower level of ovalbumin mRNA and a 20-fold-lower level of nuclear estrogen receptors, relative to the estrogen-stimulated state. The number of active forms I and II RNA polymerases declined by 50% during this time. Histological examination of oviduct sections and cell suspensions, combined with measurements of DNA content, revealed that tubular gland cells persisted as a constant proportion of the cell population for 3 d after estrogen removal. Despite a 1,000-fold decrease in the content of ovalbumin mRNA, the ovalbumin gene remained preferentially sensitive to digestion by DNase I. When 3-d-withdrawn oviducts were restimulated with either estrogen or progesterone, in situ hybridization revealed that greater than or equal to 98% of the tubular gland cells contained ovalbumin mRNA. Induction by a suboptimal concentration of estrogen was correlated with a lower concentration of ovalbumin mRNA in all cells rather than fewer responsive cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3