The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations.

Author:

Oyler G A1,Higgins G A1,Hart R A1,Battenberg E1,Billingsley M1,Bloom F E1,Wilson M C1

Affiliation:

1. Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037.

Abstract

cDNA clones of a neuronal-specific mRNA encoding a novel 25-kD synaptosomal protein, SNAP-25, that is widely, but differentially expressed by diverse neuronal subpopulations of the mammalian nervous system have been isolated and characterized. The sequence of the SNAP-25 cDNA revealed a single open reading frame that encodes a primary translation product of 206 amino acids. Antisera elicited against a 12-amino acid peptide, corresponding to the carboxy-terminal residues of the predicted polypeptide sequence, recognized a single 25-kD protein that is associated with synaptosomal fractions of hippocampal preparations. The SNAP-25 polypeptide remains associated with synaptosomal membrane components after hypoosmotic lysis and is released by nonionic detergent but not high salt extraction. Although the SNAP-25 polypeptide lacks a hydrophobic stretch of residues compatible with a transmembrane region, the amino terminus may form an amphiphilic helix that may facilitate alignment with membranes. The predicted amino acid sequence also includes a cluster of four closely spaced cysteine residues, similar to the metal binding domains of some metalloproteins, suggesting that the SNAP-25 polypeptide may have the potential to coordinately bind metal ions. Consistent with the protein fractionation, light and electron microscopic immunocytochemistry indicated that SNAP-25 is located within the presynaptic terminals of hippocampal mossy fibers and the inner molecular layer of the dentate gyrus. The mRNA was found to be enriched within neurons of the neocortex, hippocampus, piriform cortex, anterior thalamic nuclei, pontine nuclei, and granule cells of the cerebellum. The distribution of the SNAP-25 mRNA and the association of the protein with presynaptic elements suggest that SNAP-25 may play an important role in the synaptic function of specific neuronal systems.

Publisher

Rockefeller University Press

Subject

Cell Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3