The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity.

Author:

Bornens M1,Paintrand M1,Celati C1

Affiliation:

1. Centre de Genetique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.

Abstract

For an understanding of the role of microtubules in the definition of cell polarity, we have studied the cell surface motility of human lymphoblasts (KE37 cell line) using video microscopy, time-lapse photography, and immunofluorescent localization of F-actin and myosin. Polarized cell surface motility occurs in association with a constriction ring which forms on the centrosome side of the cell: the cytoplasm flows from the ring zone towards membrane veils which keep protruding in the same general direction. This association is ensured by microtubules: in their absence the ring is conspicuous and moves periodically back and forth across the cell, while a protrusion of membrane occurs alternately at each end of the cell when the ring is at the other. This oscillatory activity is correlated with a striking redistribution of myosin towards a cortical localization and appears to be due to the alternate flow of cortical myosin associated with the ring and to the periodic assembly of actin coupled with membrane protrusion. The ring cycle involves the progressive recruitment of myosin from a polar accumulation, or cap, its transportation across the cell and its accumulation in a new cap at the other end of the cell, suggesting an assembly-disassembly process. Inhibition of actin assembly induces, on the other hand, a dramatic microtubule-dependent cell elongation with definite polarity, likely to involve the interaction of microtubules with the cell cortex. We conclude that the polarized cell surface motility in KE37 cells is based on the periodic oscillatory activity of the actin system: a myosin-powered equatorial contraction and an actin-based membrane protrusion are concerted at the cell level and occur at opposite ends of the cell in absence of microtubules. This defines a polarity which reverses periodically as the ring moves across the cell. Microtubules impose a stable cell polarity by suppressing the ring movement. A permanent association of the myosin-powered contraction and the membrane protrusion is established which results in the unidirectional activity of the actin system. Microtubules exert their effect by controlling the recruitment of cytoplasmic myosin into the cortex, probably through their direct interaction with the cortical microfilament system.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3