Affiliation:
1. Department of Zoology, Duke University, Durham, North Carolina 27706.
Abstract
Cell-substratum adhesion strengths have been quantified using fibroblasts and glioma cells binding to two extracellular matrix proteins, fibronectin and tenascin. A centrifugal force-based adhesion assay was used for the adhesive strength measurements, and the corresponding morphology of the adhesions was visualized by interference reflection microscopy. The initial adhesions as measured at 4 degrees C were on the order of 10(-5)dynes/cell and did not involve the cytoskeleton. Adhesion to fibronectin after 15 min at 37 degrees C were more than an order of magnitude stronger; the strengthening response required cytoskeletal involvement. By contrast to the marked strengthening of adhesion to FN, adhesion to TN was unchanged or weakened after 15 min at 37 degrees C. The absolute strength of adhesion achieved varied according to protein and cell type. When a mixed substratum of fibronectin and tenascin was tested, the presence of tenascin was found to reduce the level of the strengthening of cell adhesion normally observed at 37 degrees C on a substratum of fibronectin alone. Parallel analysis of corresponding interference reflection micrographs showed that differences in the area of cell surface within 10-15 nm of the substratum correlated closely with each of the changes in adhesion observed: after incubation for 15 min on fibronectin at 37 degrees C, glioma cells increased their surface area within close contact to the substrate by integral to 125-fold. Cells on tenascin did not increase their surface area of contact. The increased surface area of contact and the inhibitory activity of cytochalasin b suggest that the adhesive "strengthening" in the 15 min after initial binding brings additional adhesion molecules into the adhesive site and couples the actin cytoskeleton to the adhesion complex.
Publisher
Rockefeller University Press
Cited by
377 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献