Transformation of murine melanocytes by basic fibroblast growth factor cDNA and oncogenes and selective suppression of the transformed phenotype in a reconstituted cutaneous environment.

Author:

Dotto G P1,Moellmann G1,Ghosh S1,Edwards M1,Halaban R1

Affiliation:

1. Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510.

Abstract

Constitutive expression of basic fibroblast growth factor (bFGF), a common characteristic of metastatic melanomas, was reproduced in vitro by infection of normal murine melanocytes with a recombinant retrovirus carrying a cDNA for bFGF. Expression of bFGF in these cells conferred autonomous growth in culture and extinguished differentiated functions, such as the synthesis of melanin and formation of dendrites. Independence from exogenous bFGF and loss of differentiated functions in vitro were induced also by transformation of melanocytes with the oncogenes myc, Ela, ras, and neu, although bFGF was not expressed by the respective transformants. As shown in skin reconstitution experiments onto syngeneic mice and subcutaneous injections into nude mice, the various transformants differed in their behavior in vivo. The bFGF transformants did not form tumors. They reverted to having a normal, melanotic phenotype and restricted growth. Myc and Ela transformants grew as tumors in nude mice but not in syngeneic, immunocompetent animals. Ras-transformed melanocytes were always tumorigenic, whereas the formation of tumors by neu transformants was suppressed by the concomitant grafting of keratinocytes in reconstituted skin of syngeneic mice. These data show that melanocytes genetically manipulated to produce bFGF acquire properties in vitro similar to those of metastatic melanoma cells or those induced by various oncogenes but that constitutive production of bFGF by itself is insufficient to make melanocytes tumorigenic. The experiments also show that melanocytes transformed by the selected oncogenes respond differentially to various environments in vivo.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3