Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.

Author:

Horowits R1,Maruyama K1,Podolsky R J1

Affiliation:

1. National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892.

Abstract

Connectin (also called titin) is a huge, striated muscle protein that binds to thick filaments and links them to the Z-disc. Using an mAb that binds to connectin in the I-band region of the molecule, we studied the behavior of connectin in both relaxed and activated skinned rabbit psoas fibers by immunoelectron microscopy. In relaxed fibers, antibody binding is visualized as two extra striations per sarcomere arranged symmetrically about the M-line. These striations move away from both the nearest Z-disc and the thick filaments when the sarcomere is stretched, confirming the elastic behavior of connectin within the I-band of relaxed sarcomeres as previously observed by several investigators. When the fiber is activated, thick filaments in sarcomeres shorter than 2.8 microns tend to move from the center to the side of the sarcomere. This translocation of thick filaments within the sarcomere is accompanied by movement of the antibody label in the same direction. In that half-sarcomere in which the thick filaments move away from the Z-disc, the spacings between the Z-disc and the antibody and between the antibody and the thick filaments both increase. Conversely, on the side of the sarcomere in which the thick filaments move nearer to the Z-line, these spacings decrease. Regardless of whether I-band spacing is varied by stretch of a relaxed sarcomere or by active sliding of thick filaments within a sarcomere of constant length, the spacings between the Z-line and the antibody and between the antibody and the thick filaments increase with I-band length identically. These results indicate that the connectin filaments remain bound to the thick filaments in active fibers, and that the elastic properties of connectin are unaltered by calcium ions and cross-bridge activity.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3