Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts.

Author:

Koury S T1,Koury M J1,Bondurant M C1

Affiliation:

1. Vanderbilt University, Nashville, Tennessee.

Abstract

We have used murine splenic erythrolasts infected with the anemia-inducing strain of Friend virus (FVA cells), as an in vitro model to study cytoskeletal elements during erythroid maturation and enucleation. FVA cells are capable of enucleating in suspension culture in vitro, indicating that associations with an extracellular matrix or accessory cells are not required for enucleation to occur. The morphology of FVA cells undergoing enucleation is nearly identical to erythroblasts enucleating in vivo. The nucleus is segregated to one side of the cell and then appears to be pinched off resulting in an extruded nucleus and reticulocyte. The extruded nucleus is surrounded by an intact plasma membrane and has little cytoplasm associated with it. Newly formed reticulocytes have an irregular shape, are vacuolated and contain all cytoplasmic organelles. The spatial distribution of several cytoskeletal proteins was examined during the maturation process. Spectrin was found associated with the plasma membrane of FVA cells at all stages of maturation but was segregated entirely to the incipient reticulocyte during enucleation. Microtubules formed cages around nuclei in immature FVA cells and were found primarily in the incipient reticulocyte in cells undergoing enucleation. Reticulocytes occasionally contained microtubules, but a generalized diffuse distribution of tubulin was more common. Vimentin could not be detected at any time in FVA cell maturation. Filamentous actin (F-actin) had a patchy distribution at the cell surface in the most immature erythroblasts, but F-actin bundles could be detected as the cells matured. F-actin was found concentrated between the extruding nucleus and incipient reticulocyte in enucleating erythroblasts. Newly formed reticulocytes exhibited punctate actin fluorescence whereas extruded nuclei lacked F-actin. Addition of colchicine, vinblastine, or taxol to cultures of FVA cells did not affect enucleation. In contrast, cytochalasin D caused a complete inhibition of enucleation that could be reversed by washing out the cytochalasin D. These results demonstrate that F-actin plays a role in enucleation while the complete absence of microtubules or excessive numbers of polymerized microtubules do not affect enucleation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3