Mechanism of concanavalin A-induced anchorage of the major cell surface glycoproteins to the submembrane cytoskeleton in 13762 ascites mammary adenocarcinoma cells.

Author:

Jung G,Helm R M,Carraway C A,Carraway K L

Abstract

Concanavalin A (Con A)-induced anchorage of the major cell surface sialoglycoprotein component complex (ASGP-1/ASGP-2) was studied in 13762 rat mammary adenocarcinoma sublines with mobile (MAT-B1 subline) and immobile (MAT-C1 subline) cell surface Con A receptors. Treatment of cells, isolated microvilli, or microvillar membranes with Con A resulted in marked retention of ASGP-1 and ASGP-2, a Con A-binding protein, in cytoskeletal residues of both sublines obtained by extraction with Triton X-100 in PBS. When Con A-treated microvillar membranes were extracted with a buffer containing Triton X-100, the sialoglycoprotein complex was found associated in the residues with a transmembrane complex composed of actin, a 58,000-dalton polypeptide, and a cytoskeleton-associated glycoprotein (CAG), also a Con A-binding protein, in MAT-C1 membranes, and of actin and CAG in MAT-B1 membranes. Untreated membrane Triton residues retained very little ASGP-1/ASGP-2 complex. Association of the sialoglycomembrane complex and the transmembrane complex was also demonstrated in Con A-treated, but not untreated, microvilli by their comigration on CsCl gradients. Association of both complexes with the cytoskeleton of microvilli was shown by sucrose density gradient centrifugation. A fraction of the polymerized actin comigrated with the transmembrane complex alone in the absence of Con A and with both the transmembrane complex and the sialoglycoprotein complex in the presence of Con A. From these results we propose that anchorage of the sialoglycoprotein complex to the cytoskeleton on Con A treatment occurs by cross-linking ASGP-2, the major cell surface Con A-binding component, to CAG of the transmembrane complex, which is natively linked to the cytoskeleton via its actin component. Since Con A-induced anchorage occurs in sublines with mobile and immobile receptors, the anchorage process cannot be responsible for the differences in receptor mobility between the sublines.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3