Evidence for both prelysosomal and lysosomal intermediates in endocytic pathways.

Author:

Storrie B,Pool R R,Sachdeva M,Maurey K M,Oliver C

Abstract

Horseradish peroxidase (HRP), an enzyme internalized by fluid phase pinocytosis, has been used to study the process by which pinosome contents are delivered to lysosomes in Chinese hamster ovary cells. Pinosome contents were labeled by allowing cells to internalize HRP for 3-5 min. Following various chase times, cells were either processed for HRP and acid phosphatase (AcPase) cytochemistry or homogenized and fractionated in Percoll gradients. In Percoll gradients, pinosomes labeled by a 3-5 min HRP pulse behaved as a vesicle population more dense than plasma membrane and less dense than lysosomes. In pulse-chase experiments, internalized HRP was chased rapidly (3-6 min chase) to a density position intermediate between the "initial" pinocytic vesicle population and lysosomes. With longer chase periods, a progressive accumulation of HRP in more dense vesicles was observed. Correspondence between the HRP distribution and lysosomal marker distribution was reached after a approximately 1-h chase. By electron microscope cytochemistry of intact cells, the predominant class of HRP-positive vesicles after pulse uptakes or a 3-min chase period was characterized by a peripheral rim of reaction product and was AcPase negative. After 10-120-min chase periods, the predominant class of HRP-positive vesicles was characterized by luminal deposits and HRP activity was frequently observed in multivesicular bodies. HRP-positive vesicles after a 10- or 30-min chase were AcPase-positive. No HRP activity was detected in Golgi apparatus. Together these observations indicate that progressive processing of vesicular components of the vacuolar apparatus occurs at both a prelysosomal and lysosomal stage.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3