Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure--implications for the theories of mineralization and vascular invasion.

Author:

Hunziker E B,Herrmann W,Schenk R K,Mueller M,Moor H

Abstract

Electron microscopic examination of epiphyseal cartilage tissue processed by high pressure freezing, freeze substitution, and low temperature embedding revealed a substantial improvement in the preservation quality of intracellular organelles by comparison with the results obtained under conventional chemical fixation conditions. Furthermore, all cells throughout the epiphyseal plate, including the terminal chondrocyte adjacent to the region of vascular invasion, were found to be structurally integral. A zone of degenerating cells consistently observed in cartilage tissue processed under conventional chemical fixation conditions was not apparent. Hence, it would appear that cell destruction in this region occurs during chemical processing and is not a feature of cartilage tissue in the native state. Since these cells are situated in a region where tissue calcification is taking place, the implication is that the onset and progression of cartilage calcification are, at least partially, controlled by the chondrocytes themselves. The observation that the terminal cell adjacent to the zone of vascular invasion is viable has important implications in relation to the theory of vascular invasion. This may now require reconceptualization to accommodate the possibility that active cell destruction may be a precondition for vascular invasion.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3