Author:
Cox A C,Carroll R C,White J G,Rao G H
Abstract
The shape change and aggregation of washed platelets induced by 10 microM arachidonic acid (AA) can be reversed by 20 ng/ml prostacyclin (PGI2), but these platelets can be reactivated by treatment with 30 microM epinephrine and subsequent addition of 10 microM AA mixture. These events may be modulated by cAMP since 2 mM dibutyryl cAMP also reversed activation without reactivation by epinephrine and AA. We examined protein phosphorylation and formation of cytoskeletal cores resistant to 1% Triton X-100 extraction of these platelets and correlated these processes with aggregation, fibrinogen binding, and changes in ultrastructure. Unactivated platelet cores contained less than 15% of the total actin and no detectable myosin or actin-binding protein. AA-induced cytoskeletal cores, which contained 60-80% of the total actin, myosin, and actin-binding protein as the major components, were disassembled back to unactivated levels by PGI2 and then fully reassembled by epinephrine and AA. Phosphorylation of myosin light chain and a 40,000-dalton protein triggered by AA (two- to fivefold) was reversed to basal levels by PGI2 but was completely restored to peak levels upon addition of the epinephrine and AA mixture. The reversibility of actin-binding protein phosphorylation could not be established clearly because both PGI2 and dibutyryl cAMP caused its phosphorylation independent of activation. With this possible exception, cytoskeletal assembly with associated protein phosphorylation, aggregation, fibrinogen binding, and changes in ultrastructure triggered by activation are readily and concertedly recyclable.
Publisher
Rockefeller University Press
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献