Cell surface tubulin in leukemic cells: molecular structure, surface binding, turnover, cell cycle expression, and origin.

Author:

Quillen M,Castello C,Krishan A,Rubin R W

Abstract

We report here new characteristics of cell surface tubulin from a human leukemia cell line. These cells (CEM cells) possess tubulin that is readily iodinated on the surface of living cells, turns over at a rate identical to that of other surface proteins, and is present throughout the cell cycle. When removed with trypsin, it rapidly returns to the surface. Peptide mapping of iodinated surface tubulin indicates that it possesses a similar, but not identical, primary structure to total CEM and rat brain tubulin. Living CEM cells are able to bind specifically a subfraction of CEM tubulin from metabolically labeled high speed supernatants of lysed CEM cells. Surface tubulin is more basic than the total tubulin pool. The binding, which is saturable, is inhibited by unlabeled CEM high speed supernatants but not by excess thrice-cycled rat or bovine brain tubulin. Surface tubulin is also shown to bind to living nontransformed normal rat kidney cells but not to normal, circulating, mononuclear white cells. Activated lymphocytes produce a tubulin that binds to CEM cells. Since CEM tubulin was detected in the media of 6-h cultures of CEM cells, we must conclude that at least some of the surface tubulin comes from the media. We further conclude that these leukemic cells produce an unusual tubulin that may bind specifically to any membrane. The presence of iodinatable surface tubulin, however, appears to require both the production of a unique tubulin and the presence of a "receptor-like" surface binding component.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3