Isolation of intermediate filament assemblies from human hair follicles.

Author:

Jones L N,Pope F M

Abstract

We used developing human hair follicle cells for the isolation of hard alpha-keratin structural components. Intracellular dispersions examined by electron microscopy contained both individual alpha-keratin filaments and the tactoid-like filament assemblies observed in situ organized along subfibrillar arms of macrofibrils. The assemblies of average width 47 nm were composed of closely packed alpha-keratin filaments and originated from the initial filament arrays observed in sections of developing mammalian hair follicles. We have distinguished two types of assemblies: the para-like or hexagonally packed and the ortho-like spiral or whorl type. Axial banding extended across the width of filament assemblies, which suggested that hard alpha-keratin filaments pack in lateral register and form a lattice that contains interfilamentous bridges. We observed axial banding patterns with periods ranging from 20 to 22 nm, consistent with the 22-nm periodic structure deduced from x-ray diffraction studies and present in models proposed for hard alpha-keratin and other intermediate filaments. Preliminary biochemical studies of filaments and filament assemblies indicate that they consist of the closely related group of proteins (low-sulfur proteins) ubiquitous among extracts of hard mammalian keratins. Isolated hard alpha-keratin filament assemblies provide a new and valuable structural entity for investigating the assembly mechanisms involved in the formation of the filament-matrix framework found in hard mammalian keratin appendages.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. De novo filament formation by human hair keratins K85 and K35 follows a filament development pattern distinct from cytokeratin filament networks;FEBS Open Bio;2021-04-03

2. Insect and animal-originated fibres: silk and wool;Fundamentals of Natural Fibres and Textiles;2021

3. Self-Assembly of Solubilized Human Hair Keratins;ACS Biomaterials Science & Engineering;2020-12-23

4. Macrofibril Formation;Advances in Experimental Medicine and Biology;2018

5. Structural Hierarchy of Trichocyte Keratin Intermediate Filaments;Advances in Experimental Medicine and Biology;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3