Studies on the mechanism of retinoid-induced pattern duplications in the early chick limb bud: temporal and spatial aspects.

Author:

Eichele G,Tickle C,Alberts B M

Abstract

All-trans-retinoic acid causes striking digit pattern changes when it is continuously released from a bead implanted in the anterior margin of an early chick wing bud. In addition to the normal set of digits (234), extra digits form in a mirror-symmetrical arrangement, creating digit patterns such as a 432234. These retinoic acid-induced pattern duplications closely mimic those found after grafts of polarizing region cells to the same positions with regard to dose-response, timing, and positional effects. To elucidate the mechanism by which retinoic acid induces these pattern duplications, we have studied the temporal and spatial distribution of all-trans-retinoic acid and its potent analogue TTNPB in these limb buds. We find that the induction process is biphasic: there is an 8-h lag phase followed by a 6-h duplication phase, during which additional digits are irreversibly specified in the sequence digit 2, digit 3, digit 4. On average, formation of each digit seems to require between 1 and 2 h. The tissue concentrations, metabolic pattern, and spatial distribution of all-trans-retinoic acid and TTNPB in the limb rapidly reach a steady state, in which the continuous release of the retinoid is balanced by loss from metabolism and blood circulation. Pulse-chase experiments reveal that the half-time of clearance from the bud is 20 min for all-trans-retinoic acid and 80 min for TTNPB. Manipulations that change the experimentally induced steep concentration gradient of TTNPB suggest that a graded distribution of retinoid concentrations across the limb is required during the duplication phase to induce changes in the digit pattern. The extensive similarities between results obtained with retinoids and with polarizing region grafts raise the possibility that retinoic acid serves as a natural "morphogen" in the limb.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3