FURTHER STUDIES ON THE INDUCTION OF THE DRUG-HYDROXYLATING ENZYME SYSTEM OF LIVER MICROSOMES

Author:

Orrenius Sten1

Affiliation:

1. From the Department of Pathology at Sabbatsberg Hospital, Karolinska Institutet, and The Wenner-Gren Institute, University of Stockholm, Stockholm, Sweden

Abstract

Further studies of the induction of the liver microsomal drug-hydroxylating enzyme system by pretreatment of rats with various drugs are presented. The phenobarbital-induced increase in the microsomal content of CO-binding pigment and in the activities of TPNH-cytochrome c reductase and the oxidative demethylation of aminopyrine is proportional, within certain limits, to the amount of phenobarbital injected. Removal of the inducer results in a parallel decrease in the levels of CO-binding pigment, TPNH-cytochrome c reductase, and aminopyrine demethylation. Other inducing drugs have been investigated and shown to act similarly to phenobarbital. The early increase in these enzymes is found in the microsomal subfraction consisting of rough-surfaced vesicles, whereas repeated administration of the inducing drug results in a concentration of the enzymes in the smooth-surfaced vesicles. The phenobarbital-stimulated formation of endoplasmic membranes is reflected in increased amounts of the various microsomal phospholipid fractions as revealed by thin layer chromatography. There is no significant difference between the stimulated rates of Pi32 incorporation into phospholipids of the two different microsomal subfractions in response to phenobarbital treatment. The drug-induced enzyme synthesis is unaffected by adrenalectomy.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In memoriam: Sten Orrenius (1937–2020);Biochemical and Biophysical Research Communications;2020-09

2. Role of Cell Death in Toxicology: Does It Matter How Cells Die?;Annual Review of Pharmacology and Toxicology;2019-01-06

3. Elimination of endoplasmic reticulum stress and cardiovascular, type 2 diabetic, and other metabolic diseases;Annals of Medicine;2012-08-28

4. The Influence of Inducers on Drug-Metabolizing Enzyme Activity and on Formation of Reactive Drug Metabolites in the Liver;Novartis Foundation Symposia;2008-05-30

5. Hemes, Chlorophylls, and Related Compounds: Biosynthesis and Metabolic Regulation;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3