STUDIES ON THE ORGANIZATION OF THE BRUSH BORDER IN INTESTINAL EPITHELIAL CELLS

Author:

Overton Jane1,Eichholz Alexander1,Crane Robert K.1

Affiliation:

1. From the Whitman Laboratory, University of Chicago, and the Department of Biochemistry, The Chicago Medical School, Chicago, Illinois

Abstract

Two of the fractions obtained by density gradient centrifugation of Tris-disrupted brush borders from hamster intestinal mucosa have been identified as the microvillus cores and their surrounding membranous coats, respectively. This identification has the following morphological basis. In shadowed preparations one fraction (cores) appears as rounded, compact rods, and the other fraction (coats) appears as flattened sheets. Both rods and sheets have dimensions appropriate to the identities assigned to them. In addition, negative staining shows that the rods are composed of aligned particles of roughly 60 A, consistent with the appearance of the core in tissue section, where 60-A fibrils are characteristic. The sheets are covered by non-aligned particles of approximately the same size. Sectioned preparations show that the core fraction contains predominantly fibrous material with some membranous contamination and that the coat fraction is apparently composed exclusively of elongated sacs with a unit membrane structure. Some details of the structure of the core are evident in cases where the compact rod appears to be loosened, revealing a doubled strand. The strand is approximately 350 A wide; the compact rod is roughly twice this width. With negative staining the strand shows a dense central region. The morphological identification presented here is consistent with the distribution of enzymic activity among the density gradient fractions described in the preceding paper.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3