Nectin

Author:

Mizoguchi Akira12,Nakanishi Hiroyuki3,Kimura Kazushi1,Matsubara Kaho1,Ozaki-Kuroda Kumi3,Katata Tatsuo3,Honda Tomoyuki3,Kiyohara Yoshimoto1,Heo Kyun12,Higashi Mikito2,Tsutsumi Tomonari2,Sonoda Satomi2,Ide Chizuka1,Takai Yoshimi3

Affiliation:

1. Department of Anatomy and Neurobiology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan

2. Department of Anatomy, Faculty of Medicine, Mie University, Tsu 514-8507, Japan

3. Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan

Abstract

The nectin–afadin system is a novel cell–cell adhesion system that organizes adherens junctions cooperatively with the cadherin–catenin system in epithelial cells. Nectin is an immunoglobulin-like adhesion molecule, and afadin is an actin filament–binding protein that connects nectin to the actin cytoskeleton. Nectin has four isoforms (-1, -2, -3, and -4). Each nectin forms a homo-cis-dimer followed by formation of a homo-trans-dimer, but nectin-3 furthermore forms a hetero-trans-dimer with nectin-1 or -2, and the formation of each hetero-trans-dimer is stronger than that of each homo-trans-dimer. We show here that at the synapses between the mossy fiber terminals and dendrites of pyramidal cells in the CA3 area of adult mouse hippocampus, the nectin–afadin system colocalizes with the cadherin–catenin system, and nectin-1 and -3 asymmetrically localize at the pre- and postsynaptic sides of puncta adherentia junctions, respectively. During development, nectin-1 and -3 asymmetrically localize not only at puncta adherentia junctions but also at synaptic junctions. Inhibition of the nectin-based adhesion by an inhibitor of nectin-1 in cultured rat hippocampal neurons results in a decrease in synapse size and a concomitant increase in synapse number. These results indicate an important role of the nectin–afadin system in the formation of synapses.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3