Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis

Author:

Howard James P.1,Hutton Jenna L.1,Olson John M.1,Payne Gregory S.1

Affiliation:

1. Department of Biological Chemistry, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095

Abstract

Efficient endocytosis requires cytoplasmic domain targeting signals that specify incorporation of cargo into endocytic vesicles. Adaptor proteins play a central role in cargo collection by linking targeting signals to the endocytic machinery. We have characterized NPFX(1,2) (NPFX[1,2]D) targeting signals and identified the actin-associated protein Sla1p as the adaptor for NPFX(1,2)D-mediated endocytosis in Saccharomyces cerevisiae. 11 amino acids encompassing an NPFX(1,2)D sequence were sufficient to direct uptake of a truncated form of the pheromone receptor Ste2p. In this context, endocytic targeting activity was not sustained by conservative substitutions of the phenylalanine or aspartate. An NPFX1,2D-related sequence was identified in native Ste2p that functions redundantly with ubiquitin-based endocytic signals. A two-hybrid interaction screen for NPFX(1,2)D-interacting proteins yielded SLA1, but no genes encoding Eps15 homology (EH) domains, protein modules known to recognize NPF peptides. Furthermore, EH domains did not recognize an NPFX(1,2)D signal when directly tested by two-hybrid analysis. SLA1 disruption severely inhibited NPFX(1,2)D-mediated endocytosis, but only marginally affected ubiquitin-directed uptake. NPFX(1,2)D-dependent internalization required a conserved domain of Sla1p, SLA1 homology domain, which selectively bound an NPFX(1,2)D-containing fusion protein in vitro. Thus, through a novel NPF-binding domain, Sla1p serves as an endocytic targeting signal adaptor, providing a means to couple cargo with clathrin- and actin-based endocytic machineries.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3