Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase

Author:

Kim Sun H.123,Won Seok J.123,Sohn Seonghyang4,Kwon Hyuk J.4,Lee Jee Y.3,Park Jong H.5,Gwag Byoung J.123

Affiliation:

1. Department of Pharmacology, School of Medicine

2. Center for the Interventional Therapy of Stroke and Alzheimer's Disease, School of Medicine

3. Neurotech Inc., Suwon, Kyungkido 442-749, South Korea

4. Laboratory of Cell Biology, Institute for Medical Sciences, Ajou University, Suwon, Kyungkido 442-749, South Korea

5. Department of Biological Science, Sookmyung University, 442-749 Seoul, Korea

Abstract

Several lines of evidence suggest that neurotrophins (NTs) potentiate or cause neuronal injury under various pathological conditions. Since NTs enhance survival and differentiation of cultured neurons in serum or defined media containing antioxidants, we set out experiments to delineate the patterns and underlying mechanisms of brain-derived neurotrophic factor (BDNF)–induced neuronal injury in mixed cortical cell cultures containing glia and neurons in serum-free media without antioxidants, where the three major routes of neuronal cell death, oxidative stress, excitotoxicity, and apoptosis, have been extensively studied. Rat cortical cell cultures, after prolonged exposure to NTs, underwent widespread neuronal necrosis. BDNF-induced neuronal necrosis was accompanied by reactive oxygen species (ROS) production and was dependent on the macromolecular synthesis. cDNA microarray analysis revealed that BDNF increased the expression of cytochrome b558, the plasma membrane-spanning subunit of NADPH oxidase. The expression and activation of NADPH oxidase were increased after exposure to BDNF. The selective inhibitors of NADPH oxidase prevented BDNF-induced ROS production and neuronal death without blocking antiapoptosis action of BDNF. The present study suggests that BDNF-induced expression and activation of NADPH oxidase cause oxidative neuronal necrosis and that the neurotrophic effects of NTs can be maximized under blockade of the pronecrotic action.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3