Dual regulation of intermediate filament phosphorylation.

Author:

Gilmartin M E,Mitchell J,Vidrich A,Freedberg I M

Abstract

Intermediate filament proteins have been isolated from ME-180, cells of a human cervical carcinoma. Eight of these proteins have been identified as keratins by immunologic cross-reactivity to antibodies raised against authentic human epidermal keratins. The ME-180 keratin proteins consist of two major subunits designated MEK-1 and MEK-2 with approximate molecular weights of 58,000 and 53,000, respectively, and six minor subunits of 59, 57, 52.5, 50.5, 45, and 40 kilodaltons. When ME-180 cells were incubated for 2-24 h in the presence of [32P]orthophosphate, MEK-1 and MEK-2 as well as the 52.5- and 40-kilodalton keratins were phosphorylated at their serine residues. V8 protease digests revealed that phosphorylation of MEK-2 is restricted to one peptide representing approximately half the molecule. Regulation of MEK-1 and MEK-2 phosphorylation has been studied by prelabeling the cells for 2 h in 32P-labeled medium. This was followed by up to 2 h of continued incubation in the same medium after the addition of a variety of perturbing agents. The phosphorylation of MEK-2 increased in the presence of 10(-4) M dibutyryl cyclic AMP (twofold), 1 mM methylisobutylxanthine (2.5-fold), 10(-5) M isoproterenol (fivefold), and 10(-9) M cholera toxin (sevenfold). In contrast, MEK-1 phosphorylation was unaffected by these agents. Neither cyclic GMP, Ca++, hydrocortisone, nor epidermal growth factor had any effect on the phosphorylation of MEK-1 or MEK-2. The results indicate that the phosphorylation of these two keratins is independently controlled by cyclic AMP-dependent kinase for MEK-2 and by cyclic nucleotide-independent kinase for MEK-1. The observed differences in control suggest distinct functions for MEK-1 and MEK-2 within the cytoskeletal network.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3