Shift of equilibrium density induced by 3,3'-diaminobenzidine cytochemistry: a new procedure for the analysis and purification of peroxidase-containing organelles.

Author:

Courtoy P J,Quintart J,Baudhuin P

Abstract

Galactosylated BSA (galBSA) and its conjugate to horseradish peroxidase (galBSA-HRP) enter the galactose-specific pathway of hepatocytes. 10 min after intravenous injection, structures containing either ligand sediment mostly between 33,000 and 3 X 10(6) g X min (LP fraction) and have an equilibrium density of 1.11-1.13 g/ml in sucrose gradients (Quintart, J., P. J. Courtoy, J. N. Limet, and P. Baudhuin, 1983, Eur. J. Biochem., 131:105-112). Such low density fractions, prepared from rats given galBSA-HRP, were incubated for 30 min at 25 degrees C in 5.5 mM 3,3'-diaminobenzidine (DAB) and 11 mM H2O2 in buffered sucrose. Upon equilibration in a second sucrose gradient, the galBSA-HRP distribution shifted towards higher (approximately 1.19 g/ml) density, but the bulk of protein remained at low density. In the absence of H2O2, galBSA-HRP distribution was also found at low density. As observed by electron microscopy, particles equilibrating at higher density after DAB cytochemistry were largely made of vesicles or tubules filled with DAB reaction product. The density shift of galBSA-HRP-containing organelles after incubation with DAB and H2O2 is attributed to the trapping of HRP-oxidized DAB inside the host organelles. If the low density fractions isolated from a rat injected with [3H]galBSA-HRP were mixed in vitro with similar fractions from another rat given [14C]galBSA, the 3H distribution shifted after DAB cytochemistry, but the 14C distribution was essentially unaffected. By contrast, if both derivatives were injected simultaneously, a concomitant density shift was observed. In conclusion, the DAB-induced density shift was specific to ligand-HRP-containing organelles. The potentials of the method include the purification of HRP-containing particles and the study of their association to ligands, fluid-phase tracers, or marker enzymes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3