Affiliation:
1. Institut National de la Santé et de la Recherche Médicale U-390, Laboratoire de Physiopathologie Cardiovasculaire, C.H.U. Arnaud de Villeneuve, and Centre National de Recherche Scientifique, Faculté de Pharmacie, 34295 Montpellier Cedex, France
Abstract
The Anion Cl−/HCO3− Exchangers AE1, AE2, and AE3 are membrane pH regulatory ion transporters ubiquitously expressed in vertebrate tissues. Besides relieving intracellular alkaline and CO2 loads, the AEs have an important function during development and cell death and play a central role in such cellular properties as cell shape, metabolism, and contractility. The activity of AE(s) are regulated by neurohormones. However, little is known as to the intracellular signal transduction pathways that underlie this modulation. We show here that, in cardiomyocytes that express both AE1 and AE3, the purinergic agonist, ATP, triggers activation of anion exchange. The AE activation is observed in cells in which AE3 expression was blocked but not in cells microinjected with neutralizing anti-AE1 antibodies. ATP induces tyrosine phosphorylation of AE1, activation of the tyrosine kinase Fyn, and association of both Fyn and FAK with AE1. Inhibition of Src family kinases in vivo by genistein, herbimycin A, or ST638 prevents purinergic activation of AE1. Microinjection of either anti-Cst.1 antibody or recombinant CSK, both of which prevent activation of Src family kinase, significantly decreases ATP-induced activation of AE. Microinjection of an anti-FAK antibody as well as expression in cardiomyocytes of Phe397 FAK dominant negative mutant, also prevents purinergic activation of AE. Therefore, tyrosine kinases play a key role in acute regulation of intracellular pH and thus in cell function including excitation–contraction coupling of the myocardium.
Publisher
Rockefeller University Press
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献