Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae.

Author:

Fares H1,Goetsch L1,Pringle J R1

Affiliation:

1. Department of Biology, University of North Carolina, Chapel Hill 27599, USA.

Abstract

The Saccharomyces cerevisiae CDC3, CDC10, CDC11, and CDC12 genes encode a family of related proteins, the septins, which are involved in cell division and the organization of the cell surface during vegetative growth. A search for additional S. cerevisiae septin genes using the polymerase chain reaction identified SPR3, a gene that had been identified previously on the basis of its sporulation-specific expression. The predicted SPR3 product shows 25-40% identity in amino acid sequence to the previously known septins from S. cerevisiae and other organisms. Immunoblots confirmed the sporulation-specific expression of Spr3p and showed that other septins are also present at substantial levels in sporulating cells. Consistent with the expression data, deletion of SPR3 in either of two genetic backgrounds had no detectable effect on exponentially growing cells. In one genetic background, deletion of SPR3 produced a threefold reduction in sporulation efficiency, although meiosis appeared to be completed normally. In this background, deletion of CDC10 had no detectable effect on sporulation. In the other genetic background tested, the consequences of the two deletions were reversed. Immunofluorescence observations suggest that Spr3p, Cdc3p, and Cdc11p are localized to the leading edges of the membrane sacs that form near the spindle-pole bodies and gradually extend to engulf the nuclear lobes that contain the haploid chromosome sets, thus forming the spores. Deletion of SPR3 does not prevent the localization of Cdc3p and Cdc11p, but these proteins appear to be less well organized, and the intensity of their staining is reduced. Taken together, the results suggest that the septins play important but partially redundant roles during the process of spore formation.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3