Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis

Author:

Tatomer Deirdre C.1,Terzo Esteban2,Curry Kaitlin P.2,Salzler Harmony2,Sabath Ivan3,Zapotoczny Grzegorz2,McKay Daniel J.145,Dominski Zbigniew34,Marzluff William F.12346,Duronio Robert J.12465

Affiliation:

1. Department of Biology, University of North Carolina, Chapel Hill, NC 27599

2. Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599

3. Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599

4. Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599

5. Department of Genetics, University of North Carolina, Chapel Hill, NC 27599

6. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599

Abstract

The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3′ processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3′ end processing with transcription termination.

Funder

National Institutes of Health

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3