Affiliation:
1. Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI 48105
Abstract
Gab proteins amplify and integrate signals stimulated by many growth factors. In culture and animals, retinoic acid (RA) induces neuronal differentiation. We show that Gab2 expression is detected in neurons in three models of neuronal differentiation: embryonic carcinoma (EC) stem cells, embryonic stem cells, and primary neural stem cells (NSCs). RA treatment induces apoptosis, countered by basic FGF (bFGF). In EC cells, Gab2 silencing results in hypersensitivity to RA-induced apoptosis and abrogates the protection by bFGF. Gab2 suppression reduces bFGF-dependent activation of AKT but not ERK, and constitutively active AKT, but not constitutively active MEK1, reverses the hypersensitization. Thus, Gab2-mediated AKT activation is required for bFGF's protection. Moreover, Gab2 silencing impairs the differentiation of EC cells to neurons. Similarly, in NSCs, Gab2 suppression reduces bFGF-dependent proliferation as well as neuronal survival and production upon differentiation. Our findings provide the first evidence that Gab2 is an important player in neural differentiation, partly by acting downstream of bFGF to mediate survival through phosphoinositide 3 kinase–AKT.
Publisher
Rockefeller University Press
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献