Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation

Author:

Naylor Matthew J.1,Li Na2,Cheung Julia1,Lowe Emma T.1,Lambert Elise1,Marlow Rebecca1,Wang Pengbo1,Schatzmann Franziska1,Wintermantel Timothy3,Schüetz Günther3,Clarke Alan R.4,Mueller Ulrich5,Hynes Nancy E.2,Streuli Charles H.1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK

2. Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland

3. Division of Molecular Biology of the Cell I, German Cancer Center, 69120 Heidelberg, Germany

4. Cardiff School of Biosciences, Cardiff University, Cardiff CF103US, Wales, UK

5. Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037

Abstract

Integrin-mediated adhesion regulates the development and function of a range of tissues; however, little is known about its role in glandular epithelium. To assess the contribution of β1 integrin, we conditionally deleted its gene in luminal epithelia during different stages of mouse mammary gland development and in cultured primary mammary epithelia. Loss of β1 integrin in vivo resulted in impaired alveologenesis and lactation. Cultured β1 integrin–null cells displayed abnormal focal adhesion function and signal transduction and could not form or maintain polarized acini. In vivo, epithelial cells became detached from the extracellular matrix but remained associated with each other and did not undergo overt apoptosis. β1 integrin–null mammary epithelial cells did not differentiate in response to prolactin stimulation because of defective Stat5 activation. In mice where β1 integrin was deleted after the initiation of differentiation, fewer defects in alveolar morphology occurred, yet major deficiencies were also observed in milk protein and milk fat production and Stat5 activation, indicating a permissive role for β1 integrins in prolactin signaling. This study demonstrates that β1 integrin is critical for the alveolar morphogenesis of a glandular epithelium and for maintenance of its differentiated function. Moreover, it provides genetic evidence for the cooperation between integrin and cytokine signaling pathways.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3