Nuclei and Microtubule Asters Stimulate Maturation/M Phase Promoting Factor (Mpf) Activation in Xenopus Eggs and Egg Cytoplasmic Extracts

Author:

Pérez-Mongiovi Daniel1,Beckhelling Clare12,Chang Patrick1,Ford Christopher C.2,Houliston Evelyn1

Affiliation:

1. UMR 7009, Centre National de la Recherche Scientifique/Université Paris VI, Station Zoologique, 06230 Villefranche-sur-mer, France

2. School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom

Abstract

Although maturation/M phase promoting factor (MPF) can activate autonomously in Xenopus egg cytoplasm, indirect evidence suggests that nuclei and centrosomes may focus activation within the cell. We have dissected the contribution of these structures to MPF activation in fertilized eggs and in egg fragments containing different combinations of nuclei, centrosomes, and microtubules by following the behavior of Cdc2 (the kinase component of MPF), the regulatory subunit cyclin B, and the activating phosphatase Cdc25. The absence of the entire nucleus–centrosome complex resulted in a marked delay in MPF activation, whereas the absence of the centrosome alone caused a lesser delay. Nocodazole treatment to depolymerize microtubules through first interphase had an effect equivalent to removing the centrosome. Furthermore, microinjection of isolated centrosomes into anucleate eggs promoted MPF activation and advanced the onset of surface contraction waves, which are close indicators of MPF activation and could be triggered by ectopic MPF injection. Finally, we were able to demonstrate stimulation of MPF activation by the nucleus–centriole complex in vitro, as low concentrations of isolated sperm nuclei advanced MPF activation in cycling cytoplasmic extracts. Together these results indicate that nuclei and microtubule asters can independently stimulate MPF activation and that they cooperate to enhance activation locally.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Centrosome – a promising anti-cancer target;Biologics: Targets and Therapy;2016-12

2. The Centrosome and Its Duplication Cycle;Cold Spring Harbor Perspectives in Biology;2015-02

3. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg;International Journal of Molecular Sciences;2014-10-15

4. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast;Molecular Biology of the Cell;2014-09-15

5. Causes and consequences of centrosome abnormalities in cancer;Philosophical Transactions of the Royal Society B: Biological Sciences;2014-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3