Close Is Not Enough

Author:

McNew James A.1,Weber Thomas1,Parlati Francesco1,Johnston Robert J.1,Melia Thomas J.1,Söllner Thomas H.1,Rothman James E.1

Affiliation:

1. Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Abstract

Is membrane fusion an essentially passive or an active process? It could be that fusion proteins simply need to pin two bilayers together long enough, and the bilayers could do the rest spontaneously. Or, it could be that the fusion proteins play an active role after pinning two bilayers, exerting force in the bilayer in one or another way to direct the fusion process. To distinguish these alternatives, we replaced one or both of the peptidic membrane anchors of exocytic vesicle (v)- and target membrane (t)-SNAREs (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor) with covalently attached lipids. Replacing either anchor with a phospholipid prevented fusion of liposomes by the isolated SNAREs, but still allowed assembly of trans-SNARE complexes docking vesicles. This result implies an active mechanism; if fusion occurred passively, simply holding the bilayers together long enough would have been sufficient. Studies using polyisoprenoid anchors ranging from 15–55 carbons and multiple phospholipid-containing anchors reveal distinct requirements for anchors of v- and t-SNAREs to function: v-SNAREs require anchors capable of spanning both leaflets, whereas t-SNAREs do not, so long as the anchor is sufficiently hydrophobic. These data, together with previous results showing fusion is inhibited as the length of the linker connecting the helical bundle-containing rod of the SNARE complex to the anchors is increased (McNew, J.A., T. Weber, D.M. Engelman, T.H. Sollner, and J.E. Rothman, 1999. Mol. Cell. 4:415–421), suggests a model in which one activity of the SNARE complex promoting fusion is to exert force on the anchors by pulling on the linkers. This motion would lead to the simultaneous inward movement of lipids from both bilayers, and in the case of the v-SNARE, from both leaflets.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3