Secretory protein decondensation as a distinct, Ca2+-mediated event during the final steps of exocytosis in Paramecium cells.

Author:

Bilinski M,Plattner H,Matt H

Abstract

The contents of secretory vesicles ("trichocysts") were isolated in the condensed state from Paramecium cells. It is well known that the majority portion of trichocysts perform a rapid decondensation process during exocytosis, which is visible in the light microscope. We have analyzed this condensed leads to decondensed transition in vitro and determined some relevant parameters. In the condensed state, free phosphate (and possibly magnesium) ions screen local surplus charges. This is supported by x-ray spectra recorded from individual trichocysts (prepared by physical methods) in a scanning transmission electron microscope. Calcium, as well as other ions that eliminate phosphate by precipitation, produces decondensation in vitro. Under in vivo conditions, Ca2+ enters the vesicle lumen from the outside medium, once an exocytic opening has been formed. Consequently, within the intact cell, membrane fusion and protein decondensation take place with optimal timing. Ca2+ might then trigger decondensation in the same way by precipitating phosphate ions (as it does in vitro) and, indeed, such precipitates (again yielding Ca and P signals in x-ray spectra) can be recognized in situ under trigger conditions. As decondensation is a unidirectional, rapid process in Paramecium cells, it would contribute to drive the discharge of the secretory contents to the outside. Further implications on the energetics of exocytosis are discussed.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3