Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin.

Author:

Rauvala H,Carter W G,Hakomori S I

Abstract

The extent and the specificity of the initial cell attachment induced by various proteins coated on plastic surfaces have been studied with the following results: (a) Cell adhesion on the surfaces coated with sialidase and beta-galactosidase was as strong as on concanavalin A and limulus lectin-coated surfaces and the reactions were strongly inhibited by glycosidase inhibitors or by competitive substrates. The adhesion on sialidase was inhibited by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid and by polysialoganglioside (GT1b) at low concentration (0.05-0.1 mM). The cell adhesion on beta-galactosidase coat was inhibited by 1,4-D-galactonolactone and beta-methylgalactoside but not by alpha-methylgalactoside. Thus, the initiation of cell adhesion on glycosidase surfaces could be mediated through the interactions of the specific binding sites of the enzyme surface with the cell surface substrates under physiological conditions. (b) Cell adhesion on various lectins could be blocked by various competing monosaccharides at the concentrations similar to the inhibitory concentrations for binding of lectins from solution to the cells. (c) Cell adhesion on fibronectin surfaces as well as on gelatin-coated surfaces was equally inhibited by GT1b at relatively high concentrations (0.25-0.5 mM). Lower concentrations of GT1b (0.05-0.1 mM) inhibited the cell adhesion on surfaces of Limulus lectin and sialidase. It is suggested that the cell adhesion mediated by fibronectin is based on yet unknown interactions in contrast to a specific cell adhesion through glycosidases and lectins.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3