Molecular organization of rat prolactin granules: in vitro stability of intact and "membraneless" granules

Author:

Giannattasio G.,Zanini A,Meldolesi J

Abstract

Studies carried out on a number of secretory cell systems suggest that the specific cytoplasmic granules in which the secretion products are stored before their release are complex organelles which can possess a distinct molecular organization. For instance, it has been reported that in some granules the segregated secretion products are organized into crystalline structures (1-3) or large intermolecular aggregates (4-8). It is likely that all phenomena of this type are favorable to the economy of the cell, in the sense that they reduce the energy required for storage of the secretion products. The prolactin (LTH) granules of the rat pituitary possess a number of morphological features which strongly suggest that the molecules(s) of their content might be arranged in a relatively stable structure. Thus, these granules are remarkably polymorphic in shape, and their membrane is usually separated from their content by a clear space. Furthermore, identifiable LTH granules devoid of their membrane are often seen in the pericapillary space, suggesting that upon discharge by exocytosis they are dissolved only slowly (9). However, no studies specifically concerned with the mechanisms of LTH storage have been reported so far. In order to obtain some information on this question, we have studied the behavior of isolated granule fractions incubated in vitro under a variety of carefully controlled experimental conditions.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protein nanocondensates: the next frontier;Biophysical Reviews;2023-08

2. Protein conformation and biomolecular condensates;Current Research in Structural Biology;2022

3. Functional amyloids in the human body;Bioorganic & Medicinal Chemistry Letters;2021-05

4. Protein Nanofibrils as Storage Forms of Peptide Drugs and Hormones;Advances in Experimental Medicine and Biology;2019

5. Fibrous Protein Self-Assembly in Biomimetic Materials;Advanced Materials;2018-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3