Topography of the synaptosomal membrane.

Author:

Wang Y J,Mahler H R

Abstract

The composition and disposition of the constituent polypeptides of rat cerebral cortical synaptosomal membranes were analyzed on SDS acrylamide gels. Of 20 bands readily detected, 11 account for greater than 93% of the total protein analyzed. These are: (molecu25); 3 (175); 4 (doublet, 137); 5 (doublet, 97); 6 (68); 7 (61); 8 (54); 9 (44); 10 (37); and 11 (33). Bands 5 and 8-10 are the most prominent and account for greater than 60% of the protein mass or 0.67 of its molecular fraction. By lactoperoxidase iodination, the bulk of the proteins in bands 3, 5, 6, and 8 and a portion of band 11 appear to be located on the external (junctional) face of the membrane of intact synaptosomes; proteins in bands 1, 2, 7, 9, and 10 appear to be localized on the internal (synaptoplasmic) face and become labeled only when synaptosomes are lysed. Further confirmation of the topographical distribution is provided by evidence that bands 3-6, 8, and 11 contain glycoproteins susceptible to labeling in intact synaptosomes by oxidation with galactose oxidase or periodate followed by reduction with NaB3H4. Evidence is provided for significant contributions by tubulin- and actin-like molecules to bands 8 and 9, respectively, suggesting that a substantial fraction of the tubulin in the synaptosomal membrane is disposed externally (accessible to iodination) whereas most, if not all, of the actin appears to exhibit the opposite topography. Similar though weaker inferences can also be drawn with regard to the location of tropomyosin and troponin. Preliminary evidence is provided that postsynaptic densities exhibit a protein and iodination profile distinct from that of the synpatosomal membrane.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3