Abstract
UDP-galactose: N-acetylglucosamine galactosyltransferase (GT) and CMP-sialic:desialylated transferrin sialyltransferse (ST) activities of rat liver Golgi apparatus are membrane-bound enzymes that can be released by treatment with Triton X-100. When protein substrates are used to assay these enzymes in freshly prepared Golgi vesicles, both activities are enhanced about eightfold by the addition of Triton X-100. When small molecular weight substrates are used, however, both activities are only enhanced about twofold by the addition of detergent. The enzymes remain inaccessible to large protein substrates even after freezing and storage of the Golgi preparation for 2 mo in liquid nitrogen. Accessibility to small molecular and weight substrates increases significantly after such storage. GT and ST activities in Golgi vesicles are not destroyed by treatment with trypsin, but are destroyed by this treatment if the vesicles are first disrupted with Triton X-100. Treatment of Golgi vesicles with low levels of filipin, a polyene antibiotic known to complex with cholesterol in biological membranes, also results in enhanced trypsin susceptibility of both glycosyltransferases. Maximum destruction of the glycosyltransferase activities by trypsin is obtained at filipin to total cholesterol weight ratios of approximately 1.6 or molar ratios of approximately 1. This level of filipin does not solubilize the enzymes but causes both puckering of Golgi membranes visible by electron microscopy and disruption of the Golgi vesicles as measured by release of serum albumin. When isolated Golgi apparatus is fixed with glutaraldehyde to maintain the three-dimensional orientation of cisternae and secretory vesicles, and then treated with filipin, cisternal membranes on both cis and trans faces of the apparatus as well as secretory granule membranes appear to be affected about equally. These results indicate that liver Golgi vesicles as isolated are largely oriented with GT and ST on the luminal side of the membranes, which corresponds to the cisternal compartment of the Golgi apparatus in the hepatocyte. Cholesterol is an integral part of the membrane of the Golgi apparatus and its distribution throughout the apparatus is similar to that of both transferases.
Publisher
Rockefeller University Press
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献