Evidence for multiple somatic pools of individual axonally transported proteins.

Author:

Berry R W

Abstract

The idea that individual axonally transported proteins can exist in several kinetically distinct pools within the cell body was studied using the presumptive neurosecretory low molecular weight (LMW) proteins of Aplysia neurons L11 and R15. Pulse-chase experiments revealed that the loss of labeled LMW proteins from the soma by axonal transport does not follow single exponential kinetics as it should if they are being removed from single pools. Rather, decay of label occurs in at least two phases having half-lives of approximately 1 and 40 h. The LMW proteins are homogeneous by sequential SDS gel electrophoresis and isoelectric focusing, indicating that individual protein species exhibit multiphasic decay kinetics. Two types of evidence imply that the bulk of cellular LMW protein turns over at the slower rate: the LMW pool does not reach constant specific activity at the rapid rate during continuous exposure to labeled precursor, and long-term blockade of axonal transport does not produce an appreciable accumulation of these species in the cell body. These results suggest that some of the newly synthesized LMW protein enters a small somatic pool from which it is rapidly subjected to axonal transport, while the remainder enters a larger pool where it can mix with previously synthesized protein before transport. A cellular mechanism that would yield this behavior is suggested.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3