Clathrin’s adaptor interaction sites are repurposed to stabilize microtubules during mitosis

Author:

Rondelet Arnaud1ORCID,Lin Yu-Chih1,Singh Divya1,Porfetye Arthur T.1,Thakur Harish C.1ORCID,Hecker Andreas1ORCID,Brinkert Pia1ORCID,Schmidt Nadine1ORCID,Bendre Shweta1ORCID,Müller Franziska1ORCID,Mazul Lisa1ORCID,Widlund Per O.2ORCID,Bange Tanja1ORCID,Hiller Michael345ORCID,Vetter Ingrid R.1,Bird Alexander W.1ORCID

Affiliation:

1. Max Planck Institute of Molecular Physiology, Dortmund, Germany

2. Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

3. Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

4. Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

5. Center for Systems Biology, Dresden, Germany

Abstract

Clathrin ensures mitotic spindle stability and efficient chromosome alignment, independently of its vesicle trafficking function. Although clathrin localizes to the mitotic spindle and kinetochore fiber microtubule bundles, the mechanisms by which clathrin stabilizes microtubules are unclear. We show that clathrin adaptor interaction sites on clathrin heavy chain (CHC) are repurposed during mitosis to directly recruit the microtubule-stabilizing protein GTSE1 to the spindle. Structural analyses reveal that these sites interact directly with clathrin-box motifs on GTSE1. Disruption of this interaction releases GTSE1 from spindles, causing defects in chromosome alignment. Surprisingly, this disruption destabilizes astral microtubules, but not kinetochore-microtubule attachments, and chromosome alignment defects are due to a failure of chromosome congression independent of kinetochore–microtubule attachment stability. GTSE1 recruited to the spindle by clathrin stabilizes microtubules by inhibiting the microtubule depolymerase MCAK. This work uncovers a novel role of clathrin adaptor-type interactions to stabilize nonkinetochore fiber microtubules to support chromosome congression, defining for the first time a repurposing of this endocytic interaction mechanism during mitosis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3