TORC2 controls endocytosis through plasma membrane tension

Author:

Riggi Margot1234,Bourgoint Clélia1,Macchione Mariano45,Matile Stefan45,Loewith Robbie134ORCID,Roux Aurélien24ORCID

Affiliation:

1. Department of Molecular Biology, University of Geneva, Geneva, Switzerland

2. Department of Biochemistry, University of Geneva, Geneva, Switzerland

3. iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland

4. Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland

5. Department of Organic Chemistry, University of Geneva, Geneva, Switzerland

Abstract

Target of rapamycin complex 2 (TORC2) is a conserved protein kinase that regulates multiple plasma membrane (PM)–related processes, including endocytosis. Direct, chemical inhibition of TORC2 arrests endocytosis but with kinetics that is relatively slow and therefore inconsistent with signaling being mediated solely through simple phosphorylation cascades. Here, we show that in addition to and independently from regulation of the phosphorylation of endocytic proteins, TORC2 also controls endocytosis by modulating PM tension. Elevated PM tension, upon TORC2 inhibition, impinges on endocytosis at two different levels by (1) severing the bonds between the PM adaptor proteins Sla2 and Ent1 and the actin cytoskeleton and (2) hindering recruitment of Rvs167, an N-BAR–containing protein important for vesicle fission to endocytosis sites. These results underline the importance of biophysical cues in the regulation of cellular and molecular processes.

Funder

Canton of Geneva

Swiss National Science Foundation

National Centre of Competence in Research in Chemical Biology

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3