A modified lysosomal organelle mediates nonlytic egress of reovirus

Author:

Fernández de Castro Isabel1,Tenorio Raquel1,Ortega-González Paula1,Knowlton Jonathan J.23ORCID,Zamora Paula F.23,Lee Christopher H.45,Fernández José J.6,Dermody Terence S.345ORCID,Risco Cristina1ORCID

Affiliation:

1. Cell Structure Laboratory, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain

2. Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN

3. Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA

4. Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA

5. Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA

6. Department of Macromolecular Structures, National Center for Biotechnology, Spanish National Research Council, Madrid, Spain

Abstract

Mammalian orthoreoviruses (reoviruses) are nonenveloped viruses that replicate in cytoplasmic membranous organelles called viral inclusions (VIs) where progeny virions are assembled. To better understand cellular routes of nonlytic reovirus exit, we imaged sites of virus egress in infected, nonpolarized human brain microvascular endothelial cells (HBMECs) and observed one or two distinct egress zones per cell at the basal surface. Transmission electron microscopy and 3D electron tomography (ET) of the egress zones revealed clusters of virions within membrane-bound structures, which we term membranous carriers (MCs), approaching and fusing with the plasma membrane. These virion-containing MCs emerged from larger, LAMP-1–positive membranous organelles that are morphologically compatible with lysosomes. We call these structures sorting organelles (SOs). Reovirus infection induces an increase in the number and size of lysosomes and modifies the pH of these organelles from ∼4.5–5 to ∼6.1 after recruitment to VIs and before incorporation of virions. ET of VI–SO–MC interfaces demonstrated that these compartments are connected by membrane-fusion points, through which mature virions are transported. Collectively, our results show that reovirus uses a previously undescribed, membrane-engaged, nonlytic egress mechanism and highlights a potential new target for therapeutic intervention.

Funder

Public Health Service

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3