Vimentin protects cells against nuclear rupture and DNA damage during migration

Author:

Patteson Alison E.12ORCID,Vahabikashi Amir3ORCID,Pogoda Katarzyna14,Adam Stephen A.3ORCID,Mandal Kalpana1ORCID,Kittisopikul Mark3ORCID,Sivagurunathan Suganya3,Goldman Anne3,Goldman Robert D.3ORCID,Janmey Paul A.15ORCID

Affiliation:

1. Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA

2. Physics Department, Syracuse University, Syracuse, NY

3. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL

4. Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland

5. Department of Physiology, University of Pennsylvania, Philadelphia, PA

Abstract

Mammalian cells frequently migrate through tight spaces during normal embryogenesis, wound healing, diapedesis, or in pathological situations such as metastasis. Nuclear size and shape are important factors in regulating the mechanical properties of cells during their migration through such tight spaces. At the onset of migratory behavior, cells often initiate the expression of vimentin, an intermediate filament protein that polymerizes into networks extending from a juxtanuclear cage to the cell periphery. However, the role of vimentin intermediate filaments (VIFs) in regulating nuclear shape and mechanics remains unknown. Here, we use wild-type and vimentin-null mouse embryonic fibroblasts to show that VIFs regulate nuclear shape and perinuclear stiffness, cell motility in 3D, and the ability of cells to resist large deformations. These changes increase nuclear rupture and activation of DNA damage repair mechanisms, which are rescued by exogenous reexpression of vimentin. Our findings show that VIFs provide mechanical support to protect the nucleus and genome during migration.

Funder

National Institutes of Health

National Institute of General Medical Sciences

National Cancer Institute

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3