LONG-TERM ORGAN CULTURE OF THE SALAMANDER HEART

Author:

Millhouse Edward W.1,Chiakulas John J.1,Scheving Lawrence E.1

Affiliation:

1. From the Chicago Medical School, University of Health Sciences, Department of Anatomy, Chicago, Illinois 60612.

Abstract

Beating salamander hearts were maintained in tissue culture for periods ranging from 1 to 6 months. After 1, 3, or 6 months of culture, six hearts, along with six control hearts, were fixed for electron microscopy. In control tissue, the sarcoplasmic reticulum usually demonstrated the normal pattern of paired, linearly arranged membranes, although in some cases, the reticulum showed a variation from these membranes to a series of small vesicles. There was no evidence of a T-system of tubules in any of the material examined. Desmosome-Z band complexes were observed in almost all sections of both control and experimental material. A possible role of these complexes in the excitation-contraction mechanism is discussed. In 3 month cultured material, alterations in normal myofibrillar pattern occurred. Small segments of myofibrils branched from one Z band to join the Z band of an adjacent myofibril, or appeared to be fraying out into the sarcoplasm. In 6 month cultured material, myofibrils were fragmented into short segments from which myofilaments frayed out into the sarcoplasm. This filamentous material may be remnants of myofilaments. Despite the morphological changes in myofibrils, the heart pulsation rate, established at the beginning, was maintained throughout the culture period. It is suggested that the alterations, observed in the experimental material, occurred in elements not essential for heart beat maintenance, or that these alterations have not yet progressed to a critical point of affecting the heart beat.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3