COMPARISON OF MITOTIC PHENOMENA AND EFFECTS INDUCED BY HYPERTONIC SOLUTIONS IN HELA CELLS

Author:

Robbins Elliott1,Pederson Thoru1,Klein Paul1

Affiliation:

1. From the Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461

Abstract

Interphase HeLa cells exposed to solutions that are 1.6 x isotonic manifest a series of morphological transformations, several of which grossly resemble those which occur when untreated cells enter prophase. These include chromosome condensation with preferential localization at the nuclear envelope and nucleolus, ruffling of the nuclear envelope, and polyribosome breakdown. The nucleolus loses its fibrous component and appears diffusely granular. At 2.8 x isotonicity the nuclear envelope is selectively dispersed although other membranes show morphological alterations also. The characteristic transitions of the lysosomes, Golgi complex, and microtubules seen in normal mitosis do not occur during hypertonic treatment. All the changes induced with hypertonic solutions are rapidly reversible, and the nucleus particularly goes through a recovery phase which bears some similarity to that of the telophase nucleus. The prophase-like condensation of the chromatin following exposure of the intact cell to hypertonic medium cannot be reproduced on an ultrastructural level in the isolated nucleus with any known variation in salt concentration, suggesting significant modifications of the nuclear contents during isolation. In addition to these morphological responses, hypertonic solutions also markedly and reversibly depress macromolecular synthesis. The polyribosome disaggregation that results from exposure to hypertonic solutions may be partially prevented by prior exposure to elevated Mg++ concentrations; this same ion is also partially effective in preventing the polyribosome breakdown which normally occurs as cells enter mitosis.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3