Integrated stereological and biochemical studies on hepatocytic membranes. III. Relative surface of endoplasmic reticulum membranes in microsomal fractions estimated on freeze-fracture preparations.

Author:

Losa G A,Weibel E R,Bolender R P

Abstract

New methods are required for identifying membranes in subcellular fractions with respect to their origin, if such preparations are to be evaluated morphometrically. One method is freeze-fracturing which reveals intramembrane particles whose size, pattern, and numerical density differ for various membrane types. The question is examined whether the differences in numerical particle density per square micrometer of membrane (alpha) can be used to differentiate membrane vesicles found in microsomal fractions from liver cells with respect to their origin in the hepatocytes. It is found that the range of alpha for the protoplasmic face (PF) of endoplasmic reticulum (ER) membrane (1,900 less than alpha less than 3,250) is intermediate between those for plasma and mitochondrial membranes. Since PF(ER) should appear in the outer leaflet of microsomal vesicles, alpha was estimated on concave profiles of freeze-fracture preparations; the numerical frequency distribution of vesicles with respect to alpha was trimodal, with a major peak around 2,900/micrometer2 and 66% of the vesicles in the range determined for PF(ER). Using a new stereological method, it was calculated that 63% of the membrane surface in these microsomal fractions was of ER origin by this criterion. On the same preparations, an attempt was made to label the ER-derived membranes cytochemically for glucose-6-phosphatase. A line intersection count revealed 62% of the membrane surface to be of ER origin on the basis of marker enzyme labeling. These findings indicate a smaller part of ER membranes in microsomal fractions than would be predicted from biochemical data (77%). The possible reasons for such discrepancies are discussed; shifts in particle densities due to the preparation procedure could lead to an underestimate by freeze-fracturing, whereas the prediction from biochemical data could be overestimates if marker enzymes were not homogeneously distributed.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3