Induction and mitochondrial localization of cytochrome P450scc system enzymes in normal and transformed ovarian granulosa cells.

Author:

Hanukoglu I1,Suh B S1,Himmelhoch S1,Amsterdam A1

Affiliation:

1. Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel.

Abstract

After ovulation of an oocyte, granulosa cells of the ovarian follicle differentiate into luteal cells and become a major factor dedicated to the synthesis of the steroid hormone progesterone. We recently established granulosa cell lines by cotransfection of granulosa cells with SV-40 and Ha-ras oncogene. In these cells progesterone secretion can be induced by cAMP as in normal rat granulosa cells. The induction of progesterone secretion is observed only after approximately 24 h and closely follows the delayed but quantitatively dramatic induction of the mitochondrial cytochrome P450scc which catalyzes the first step in steroid hormone biosynthesis. The mitochondrial P450 system electron transport proteins, adrenodoxin and adrenodoxin reductase, are also induced but adrenodoxin shows a faster induction. Immunofluorescence studies show that the three enzymes are induced in all cells and incorporated into all mitochondria uniformly. Electron microscopic examination using immunogold technique further confirms this and reveals that adrenodoxin is predominantly located on the matrix side of the inner mitochondrial membrane. Thus, adrenodoxin, which is a small highly charged protein, shows a distribution similar to P450scc which is an integral membrane protein. The uniformity of the response of the cells provides further evidence for the homogeneity of the cell line and makes this new granulosa cell line a highly promising system for the study of the molecular mechanisms involved in changes in gene expression during the process of granulosa cell differentiation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3