Microtubules are stabilized in confluent epithelial cells but not in fibroblasts.

Author:

Pepperkok R1,Bré M H1,Davoust J1,Kreis T E1

Affiliation:

1. European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany.

Abstract

Rhodamine-tagged tubulin was microinjected into epithelial cells (MDCK) and fibroblasts (Vero) to characterize the dynamic properties of labeled microtubules in sparse and confluent cells. Fringe pattern fluorescence photobleaching revealed two components with distinct dynamic properties. About one-third of the injected tubulin diffused rapidly in the cytoplasm with a diffusion coefficient of 1.3-1.6 x 10(-8) cm2/s. This pool of soluble cytoplasmic tubulin was increased to greater than 80% when cells were treated with nocodazole, or reduced to approximately 20% upon treatment of cells with taxol. Fluorescence recovery of the remaining two-thirds of labeled tubulin occurred with an average half-time (t1/2) of 9-11 min. This pool corresponds to labeled tubulin associated with microtubules, since it was sensitive to treatment of cells with nocodazole and since taxol increased its average t1/2 to greater than 22 min. Movement of photobleached microtubules in the cytoplasm with rates of several micrometers per minute was shown using very small interfringe distances. A significant change in the dynamic properties of microtubules occurred when MDCK cells reached confluency. On a cell average, microtubule half-life was increased about twofold to approximately 16 min. In fact, two populations of cells were detected with respect to their microtubule turnover rates, one with a t1/2 of approximately 9 min and one with a t1/2 of greater than 25 min. Correspondingly, the rate of incorporation of microinjected tubulin into interphase microtubules was reduced about twofold in confluent MDCK cells. In contrast to the MDCK cells, no difference in microtubule dynamics was observed in sparse and confluent populations of Vero fibroblasts, where the average microtubule half-life was approximately 10 min. Thus, microtubules are significantly stabilized in epithelial but not fibroblastic cells grown to confluency.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3