Purification and characterization of an extracellular fragment of the sea urchin egg receptor for sperm.

Author:

Foltz K R1,Lennarz W J1

Affiliation:

1. State University of New York, Department of Biochemistry and Cell Biology, Stony Brook 11794-5215.

Abstract

Fertilization in the sea urchin involves species-specific interaction between the ligand bindin on the surface of acrosome-reacted sperm and a receptor of high molecular weight on the surface of the egg. Efforts to understand this interaction and the resultant signal transduction events leading to egg activation have been limited because of the large size and extreme insolubility of the intact receptor on the egg surface. Earlier work suggested that an alternative strategy would be to isolate proteolytic fragments of the extracellular domain of this receptor. Consequently, we have treated S. purpuratus eggs with a specific protease, lysylendoproteinase C. This enzyme treatment abolished the ability of eggs to bind sperm and resulted in the release of proteolytic fragments that bound to sperm and showed inhibitory activity in a fertilization bioassay. One of these fragments, presumed to be a fragment of the extracellular domain of the receptor, was purified to homogeneity by gel filtration and anion exchange chromatography and shown to be a 70-kD glycosylated protein. Several lines of evidence support the contention that this fragment is derived from the receptor. First, the fragment inhibited fertilization species specifically. Second, species specific binding of the 70-kD glycoprotein to acrosome-reacted sperm was directly demonstrated by using 125I-labeled receptor fragment. Third, the fragment exhibited the same species specificity in binding to isolated bindin particles. Species specificity was abolished by Pronase digestion of the fragment. This observation supports the hypothesis that although binding is mediated by the carbohydrate moieties, species specificity is dependent on the polypeptide backbone. The availability of a structurally defined fragment of the receptor will facilitate further studies of the molecular basis of gamete interaction.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel role for ATP2B in ascidians: Ascidian‐specific mutations in ATP2B contribute to sperm chemotaxis;Journal of Experimental Zoology Part B: Molecular and Developmental Evolution;2022-04-25

2. Recovery of Sea Star Egg Cell Surface Proteins Released at Fertilization;Methods in Molecular Biology;2020-10-20

3. Species-specific mechanisms during fertilization;Current Topics in Developmental Biology;2020

4. Sperm chemotaxis promotes individual fertilization success in sea urchins;Journal of Experimental Biology;2016-01-01

5. The quest for the sea urchin egg receptor for sperm;Biochemical and Biophysical Research Communications;2012-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3