Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing nascent secretory polypeptides.

Author:

Yu Y H1,Sabatini D D1,Kreibich G1

Affiliation:

1. Department of Cell Biology, New York University School of Medicine, New York 10016.

Abstract

Polyclonal antibodies directed against ribophorins I and II, two membrane glycoproteins characteristic of the rough endoplasmic reticulum, inhibit the cotranslational translocation of a secretory protein growth hormone into the lumen of dog pancreas or rat liver microsomes. As expected, site-specific antibodies to epitopes located within the cytoplasmic domain of ribophorin I, but not antibodies to epitopes in the luminal domain of this protein, were effective in inhibiting translocation. Since monovalent Fab fragments were as inhibitory as intact IgG molecules, ribophorins must be closely associated with the translocation site and, therefore, are likely to function at some stage in the translocation process. In all cases, the antibodies that inhibited translocation also caused a significant reduction in total protein synthesis and treatments that neutralized their capacity to inhibit translocation also prevented their inhibitory effect on protein synthesis. This would be expected if the antibodies blocked the membrane-mediated relief of the SRP-induced arrest of polypeptide elongation. The antibodies were effective only when added before translocation was allowed to begin. In this case, they prevented the targeting of active ribosomes containing mRNA and nascent chains to the ER membrane. Thus, ribophorins must either directly participate in targeting or be so close to the targeting site that the antibodies sterically blocked this early phase of the translocation process.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3