Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly.

Author:

Blount P1,Merlie J P1

Affiliation:

1. Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.

Abstract

The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin-treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits accumulate, and ultimately make functional receptors in AChR-expressing cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3